
REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-04- 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the tinne for r 
gathering and maintaining the data needed, and completing and reviewing the collection of information.   Send comments regarding this 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorat 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA   22202-4302.   Respondents should be aware that notwithstanding any other provision ut 
penalty for failing to comply with a collection of information if it does not display a currently valid 0MB control number, 
PLEASE DO NOT RETURN YOUR  FORM TO THE ABOVE ADDRESS.  ^_^^ 

O^'^ 

1.  REPORT DATE/'DO-MM-yy/V; 2.  REPORT TYPE 
Final 

3.  DATES COVERED (From - To) 

1 September 2003 - 31 May 2004 
4.  TITLE AND SUBTITLE 

Detecting and Mining Similiarities, Differences and Target Patterns in 
Sequences of Images using the PFF, LGG and SPNG Approaches 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 

F49620-03-C-0091 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 

Mrs. Despina Bourbakis 
5d.   PROJECT NUMBER 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Automation, Integration of Information & Systems Inc. 
9834 Counrty Creek Way 
Centerville, OH 45458-9244 20040721 047 
9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Office of Scientific Research 
4015 Wilson Blvd 
Mail Room 713 
Arlington, VA 22203 

10. SPONSOR/MONITOR'S ACRONYM(S) 

AFOSR 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Distribution Statement A. Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

In phase I the identification and significance of the problem was the mining images, especially sequences of images or video for 
detecting-extracting, fusing and recognizing differences, changes and associating patterns. These types of problems are difficult 
challenges in the image analysis and computer vision research community. These difficulties mainly due to the textural nature of the 
images and the possible noisy conditions during their capture. The recognition component was not a part of the phase I, but it 
belongs to phase II. We did it, however, in phase I in order to focus in phase II on the integration and real-time issues. Thus, for the 
achievement of the phase I tasks (objectives), wc have developed and /or used several methods such as Pixel Flow Functions (PFF) 
(or projections). Segmentation, Local Global Graphs (L-G), Genetic Algorithms (GAs). Registration (or Mapping), Curve Fitting. 
Wavelets, Region Synthesis, Stochastic Pctri-Nets (SPNs), and others. The efficient uses of these methods in a certain sequence has 
produced the desirable results for each of the tasks. Here we present each task and the sequence of methods involved for obtaining 

■'*" 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a.  REPORT     b. ABSTRACT   c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

Despina Bourbakis 
19b. TELEPHONE NUMBER l/nc/ude area code) 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

BEST AVArLABLE COPY 



From : Automation, Integration of Information & Systems Inc. 
Mrs Despina Bourbakis, President 

To: Dr. Robert Herklotz and Mr. Stanley Borek 

Detecting and IVIining Similarities, Differences and Target 
Patterns in Sequences of Images using the PFF, LGG and SPNG 

Approaches 

Final Technical Report 

In phase I the identification and significance of the problem was the mining images, especially 
sequences of images or video for detecting-extracting, fusing and recognizing differences, 
changes and associating patterns. These types of problems are difficult challenges in the image 
analysis and computer vision research community. These difficulties mainly due to the textural 
nature of the images and the possible noisy conditions during their capture. The recognition 
component was not a part of the phase I, but it belongs to phase II. We did it, however, in phase I 
in order to focus in phase II on the integration and real-time issues. Thus, for the achievement of 
the phase I tasks (objectives), we have developed and /or used several methods such as Pixel 
Flow Functions (PFF) (or projections). Segmentation, Local Global Graphs (L-G), Genetic 
Algorithms (GAs), Registration (or Mappmg), Curve Fitting, Wavelets, Region Synthesis, 
Stochastic Petri-Nets (SPNs), and others. The efficient uses of these methods in a certain 
sequence has produced the desirable results for each of the tasks. Here we present each task and 
the sequence of methods involved for obtaining the results: 
Task-1: Detecting and Extracting Differences and Changes in Sequence of Images 

(PFF, L-G graphs, Registration, GAs, Segmentation) 
Task-2: Fusing Visual and Thermal Images 

(Registration, GAs) 
Task-3: Tracking Targets and SPN Formations of Patterns 

(PFF, L-G graphs. Segmentation, Registration, SPNs) 
Task-4: Recognizing Patterns or Objects 

(Curve Fitting, Wavelets, Segmentation, Region Synthesis, L-G graphs) 

TASK-1:   DETECTING AND EXTRACTING DIFFERENCES AND CHANGES 
IN SEQUENCES OF IMAGES 

1. Introduction 
In this work we handle the problems of image registration, change detection, object/target 

tracking and multimodal fiision in the domain of aerial imagery. This domain is attracting a 
constantly growing interest and it has many applications, including monitoring of urban 
development and environmental changes, target detection and tracking, medical imaging 
applications and is also closely related to motion estimation and general video processing 
methodologies. 

Image and video registration is the process of geometrically aligning an image pair of the 
same scene taken under different viewpoint, illumination and temporal conditions. Several 
methodologies have been proposed including correlation-based, Fourier domain and feature 
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matching approaches. Following the alignment of the two images, a change detection method is 
applied that detects the meaningful differences between the image pair. These methods are also 
used for motion analysis and especially in motion segmentation to extract the moving objects in 
dynamic scene analysis i.e. object tracking. Usually change detection is employed to reduce the 
amount of data for further processing. Furthermore in the context of aerial imagery the visual 
information derived from several optical sensors operating in varying wavelengths and having 
different resolutions. An important problem in this context is the fusion of information from 
different sources. In this work we consider these problems in a common framework to build an 
aerial vision scheme. 

Registration Methodologies- As mentioned above, the literature in this subject is very rich 
and several methods of dynamic scene analysis can be used for this purpose [3]. Earlier attempts 
were based on template matching using statistical measures for example cross-correlation, cross- 
covariance, absolute differences etc. These methods are adequate for simplified conditions, i.e. 
for translational variations of the image scene. On the other hand, correlation-based measures are 
not so efficient for images corrupted by other types of noise or illumination differences. Another 
group of methods employs spatial projections on horizontal, vertical or arbitrary oriented axis for 
registration and motion estimation [4,13]. These methods are also formulated by the Radon 
transform and can address translation and rotation transforms. Several Fourier domain methods 
were also proposed [9,12], based on the Fourier Amplitude or Phase correlation and the Fourier 
Mellin transform mainly. According to these approaches, some properties of the Fourier 
transform related to the Shift theorem are used to account for translation, rotation and scale 
differences. In addition to that, they perform well in the occurrence of frequency dependent noise 
and handle the illumination changes and variations due to different sensors efficiently. Another 
advantage of these methods is that they can be implemented fast using FFTs. However, a usual 
problem of Fourier-based techniques is the aliasing effect that can be resolved using windowing 
operations. Furthermore, these methods are limited to specific well-defined transformations, 
mainly translation and rotation. When a spatially local ttansformation exists (temporal 
registration) or when the images contain different parts of the scene, these methods present 
shortcomings .Local variations can be efficiently handled by optical flow-based techniques 
[8,11]. The optical flow can be defined as the solution of the differential equation of the motion 
consfraint and the main solutions to it were proposed by Horn and Schunk, and Lucas Kanade 
[11]. These methods are regularly applied to motion estimation and segmentation applications. 
They can address translation, rotation and scale, for relatively small displacements and they suffer 
from the aperture effect. Hierarchical versions of these methods can be applied for larger 
displacements [2]. Another popular category is represented by the feature-based methods. These 
mainly use point mappings to address more complicated variations. In general, the point mapping 
approach can be formulated as follows. Given a set of points R in the reference and another set / 
in the misaligned (input) image, our task is to determine the optimal spatial transformation in the 
space T that maximizes the similarity metric DRJ, which is defined in the space of Cartesian 
product ofR and /, DR.I e Rxl. 

Change detection [10,15]is closely related to registration i.e. a good registration result 
simplifies this process. These approaches may be generally classified into pixel-based and region- 
based. The simplest approaches are based on pixel differences and a subsequent thresholding 
operation to detect the significant changes. Other more recent approaches select the threshold by 
estimating the noise of the difference image, or by using statistics of the background pixels. 
Nevertheless these methods are sensitive to noise and radiometric changes. Therefore some 
region-based approaches were proposed, which estimate characteristics over image areas. These 
methods include hypothesis testing, or likelihood ratio testing approaches. However these 
methods are still illumination dependent, so shading and texture models were proposed to achieve 
illumination invariance. 



The proposed method- Here we developed a framework that deals with the correspondence 
problem for aerial images. The requirements are to have an automated registration approach and 
efficient change detection. Moreover, fusion of different sensors should be feasible and the 
method should be temporal and illumination invariant. The registration is completed by a 
stochastic optimization scheme using Genetic Algorithms to determine the Affme Transform 
coefficients to match the image pair. Next to that, we employ a hierarchical optical flow approach 
to account for the smaller displacements of the image and improve the change detection 
effectiveness. This simplifies the change detection process that is completed using the 
differencing and thresholding operation. 

2. GAs Optimization 
In this paragraph are explained the main steps of GA-based registration. A point mapping 

scheme is presented that uses stochastic optimization to automate the feature mapping process. At 
this stage the employed feature space is defined by the pixel intensity. The proposed scheme is 
outlined in figure 1. The search space corresponds to the conformal mapping or the affine 
transformation, which are adequate for aerial images. In most cases the conformal mapping (also 
known as rigid transformation) approach is sufficient. 

Affme transform. In the case of affine transform a point (xi,>'i) of the input image is mapped 
onto the point (;c2,j2) of the registered image as expressed by the following equation: 
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The parameters a-f are the affine parameters and they cover the several forms of 
misalignments i.e. translation, scale, rotation and shear. Affine transforms are linear since they 
preserve straight lines. 

Conformal mapping. When the shear operation is omitted the corresponding transform is 
called conformal mapping and equation (1) becomes: 
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Here, r expresses the scale, 6 the rotation, and t^ and ty the translation parameters. This case 
is illustrated in figure 2. 

Generally, in the point mapping process the most important and difficult step is feature 
selection. This is due to the occurrence of outliers, digitization effects, noise and illumination 
variations that affect the feature values. Although several feature selection and extraction 
methods have been proposed, this task becomes difficult when significant amount of uncorrected 
variations occur and it remains an open research topic. 

Automation 
feedback scheme 
methods include 
limited to simple 
genetic algorithm 
the global search 

of the process using feedback-ln order to overcome the above difficulty, a 
may be employed to define the optimal transformation. Some previous related 
relaxation, clustering and hierarchical search approaches; however they were 
variations or implied impractical computational complexity. In our scheme the 
optimization approach [7] is used to find the optimal registration parameters in 
space. The employed search space corresponds to the class of the conformal (or 



rigid) spatial transforms. The feature selection process is not necessary in this approach; the 
overlapping areas of the examined images are compared instead. This process is described next. 

The Genetic Algorithms approach is a stochastic method, very well suited for optimization 
problems in several fields [7,8]. The initial search space is reduced using prmciples of the 
evolution theory, in order to maximize a user-defined fitness fimction. The input variables of the 
genetic algorithm, known as chromosomes are bit-strings that contain the parameters of the 
spatial transformation. The population of chromosomes is selected randomly in the initial search 
space and a fraction of the good solutions is selected while the rest is eliminated. The 
chromosomes that remain are combined according to the three basic operations of reproduction, 
crossover and mutation. More specifically, reproduction is the operation by which the strings that 
produce high fitness values remain in the next generation. Crossover is the random combination 
of the best strings coming from the previous generation. Reproduction and crossover are 
responsible for the searching capability of genetic algorithms. The mutation operation prevents 
the genetic algorithms from converging to a local solution by randomly changing the binary value 
at a location in the bit string. The above process is iterated until the algorithm converges to the 
final solution within a generation. 

According to the previous paragraph, a fitness function is evaluated for each chromosome of 
the population, and should be maximized. Since our goal is to achieve efficient image 
registration, a robust similarity measure has to be defined in order to express the similarity of the 
transformed image with our reference image. Several measures were tested, including the 
correlation, covariance, correlation coefficient and sum of absolute differences. It was concluded 
that the centered sum of absolute difference produced more efficient results than the other 
measures. This measure is expressed by the relation: 

DR., = Zl\R{x,y)- 
X   y 

■R-I{x,y) + I (3) 

where R and / are the reference and input images while R and / are the mean estimates 
respectively, calculated over the overlapping area of the image pair. This function is inverted to 
fimction as a fitness measure. In the following paragraph are reported some comparative 
experimental results of this scheme. 

Reference 
and Input 
Images 

Affine 
Transform 

Algorithm        —^ ^ 
Converged?       ^ '^ 

Yes 

Matching 
Cost 

Registered 
Images 

Figure 1. The feedback optimization registration scheme. 
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Figure 2. A synthetic example of two aerial images that contain scale, rotation and translation 
variations. 
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Figure 3. The original test images. 

Figure 4. Registered images. 

3. Hierarchical Optical Flow 
In the computer vision field it is essential to compute the image motion. This is defined as 

the perspective projection of the 3D scene points that move relative to a camera on to the 2D 
imaging surface [8]. The optical flow approximates the image motion under the condition that the 
illumination changes are caused by motion, and the surfaces of the scene are Lambertian. Apart 
from that the image motion can be estimated by the correspondence of some features points that 
are usually comer points or spatio-temporal homogeneous image regions and estimate the motion 
vectors. It was indicated that for the case of slow motion the methods of the first category, also 
called differential methods, produce more accurate results than correspondence methods. 



In this work we use the differential method similarly to Lucas and Kanade [11] in a 
hierarchical scheme for the case of affine motion. In general, the motion constraint equation is 
expressed as follows: 

V/.°= '^ Ix-Vx + Ix-Vy + Il^O, 
dt 

(4) 

where / is the image intensity, 4 ly and /, are the spatial and temporal derivatives of / and 

V = {vx,Vy) = (—,—) is the velocity vector. This equation holds following the assumptions of 
dt   St 

locally translational motion, preservation of intensity over time and the continuity of the image 
over space and time. A well known ambiguity pitfall known as the aperture problem is overcome 
by assuming the constant velocity constraint and the image velocity is calculated in the least 
squares sense after calculating the spatial and temporal derivatives for a set of points. 

For the case of large displacement, a hierarchical framework is followed that includes the 
following stages: 

1. A Gaussian image pyramid is constructed, 
2. Starting from the coarsest towards the finest resolution, 

3. The affine motion is estimated, 
4. The image is iteratively warped, 

5. Method is completed after the finest resolution is processed. 

This approach is efficient when applied to the registered image the refine the alignment prior 
to the change detection process. 



Fig. 5. Optical flow fields (first row) and the aligned images using hierarchical optical 
flow (second row). 

4. Change Detection 
The fine alignment process facilitates the change detection process. Two approaches were 

adopted. According to the first one simple differencing is estimated first and a thresholding 
operation follows to produce the final differences. In figure 6 are displayed the image differences 
before and after the fine alignment. From these images it is obvious that the hierarchical optical 
flow estimation is critical for the final results. 

A more robust process is to estimate the displaced fi-ame differences and apply segmentation 
to the first image to estimate the regions activity. The regions with the most active pixels are 
classified as different. The authors are currently working on the implementation of a texture- 
based, illumination invariant measure to be included in the change detection process. 

Figure 6. Differencing before alignment (first row) after alignment (second row). 



5-Alternate Approaches 

5.1- Merging PFF+LGG for detecting changes in sequences of images 
At the AIIS site the researchers are working for the completion of the merge of the Pixel Flow 
Functions (PFF) method with the Local Global Graph (LGG) method for detecting changes and 
pattems in sequences of images. 
The PFF method is a sensitive method on changes that occur at the pixel level. When a video is 
taken, however, the PFF method as it is (sensitive) cannot perform well because detects all the 
changes that occur between two MPEG lossy compressed images. More specifically, two non 
consecutive MPEG frames carry differences at all of their pixels due to different illumination and 
lossy compression on these pixel values. These differences are not necessarily visible to human 
eye. In order to merge the PFF method with the LGG method, an appropriate threshold has to be 
defined for the PFF sensitivity. This threshold with allow us to automatically frame the 
differences as shown in the figures 7, below. In particular, many image frames were captured by a 
digital camera (video). From the video images 4 non consecutive frames were selected for testing 
the PFF and LGG algorithms. The reasoning for selecting non consecutive image-frames is that, 
this way tests the robustness of the examined methods and is a challenge as well. More 
specifically examining consecutive frames, it is easy to fmd something that was not well defined 
in a previous frame, and the tracking process is simpler. Having, however, non consecutive image 
frames to examine, the challenge is greater than the consecutive frames case, since we may know 
very little about previous frames. This represent the case of a very difficult problem, where there 
is a moving camera and moving targets as well. 

In the presented test here, the image frames contain people walking in two different groups, 
see frames around these groups, figures 7 and 8. The frames were extracted from these images 
and a Region Growing based on frizzy like reasoning was performed on these frames for 
determining the regions of change (or difference), see the figures 8, below. The LGG method was 
performed on the segmented images for determining the regions (L-G) graphs. 

The LGG method is used to extract the regions and the shape of the detected differences. For 
this particular part of the task-1, we used two different image segmentation techniques, the 
Region-Growing and the Watershed with Clustering. The reasoning behind this effort is to ensure 
that the extracted regions are accurate with minimum loss of information for the later synthesis 
and recognition of the pattems and targets. 

5.2- The Image Segmentation Approach and Changes Extraction 
In order to extract the objects inside the Rectangles of Displacement some other edge and 

region based segmentation methods were considered as well using watershed segmentation, 
graphs and clustering and frizzy logic approaches. In the following figures 9 some results are 
displayed for watershed based segmentation, which provides improved delineation accuracy. 
Apart from that a small study was conducted comparing our results in different color spaces. 
The Region Growing and the Watershed with Clustering segmentation methods show different 
results. Since our goal is to synthesize different image regions, we have to study which of these 
two techniques (or a combination of them) is the best way for selecting the correct image regions 
for synthesis and later recognition of the "targets or pattems" composed by these regions. This 
particular effort will continue and a good feedback is expected during the ftision task of this 
project. 



Framing changes 

.--.       ,,.4     ..^^,:,g, ,^.,^_ 

Estimatioi 
of Inter- 
Frame 
Differences 
and 
Definition of 
Displaced 
Rectangles 

A Sequence of 
Original Test 
Images 

Figure 7 



Figure 8: Segmentation and Application of L-G approach on the Displaced Regions 
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Figure 9: The alternative segmentation and the generation of the region graphs 
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TASK-2 : FUSING VISUAL AND THERMAL IMAGES 

In several cases our objective is to fuse and align images acquired from different sensors, 
such as visual and thermal. In these cases the relationship between the intensities of the examined 
image pair is unknown and it usually depends on the environmental conditions. As pointed out in 
previous works (for example in [1.2]) two main considerations have regularly to be addressed; i) 
the image representation and ii) the similarity measure. 

In this part of our project research an attempt was made to develop an illumination invariant 
approach that will facilitate the image matching process. Some usual representations are based on 
contour features, vector fields and feature points. Although their being promising, most of these 
methods include thresholding operations and feature tracking processes which have not 
converged to robust results under varying conditions. 

The method employed here, was inspired by the observation that the main image feature that 
remains relatively unchanged under multimodal imaging is the texture. The texture is mostly 
evidently in finer resolutions, where high frequency information is present. In coarser resolutions 
usually the texture is smoothed out and the edges between different objects become more 
apparent [2]. It has also been indicated that the human visual system implies multiscale 
processing in its operation. This idea has also been used in the fields of scale space and wavelet 
processing for image segmentation [3] and object recognition schemes. 

In this report the authors have tested three different representation approaches that were 
included in the GA-based image registration scheme; the first is the operator Laplacian of 



Gaussian that contains high frequency mfoimation, the second was derived from a non linear 
diffusion process and the third is based on non-parametric edge detection scheme. 

The Laplacian of Gaussian (LoG) is a well known operator that has been used for edge 
detection and localization. This operator is the result of the application of the second derivative 
operator on the Gaussian kernel function and the computation of the energy of this signal. This 
method produces acceptable results; however it is not efficient for cases that include rotation 
misregistration. This mostly attributed to the fact that the LoG is rotation invariant. In the next 
stage the authors developed a texture representation scheme based on the idea of non linear 
diffusion. According to this approach the image is smoothed in the areas of homogeneous 
intensity while preserving the location of significant edges as it was first proposed by Perona and 
Malik [5]. This operation can be also regarded as non-linear smoothing that uses an adaptive 
Laplacian operator to detect the homogeneous intensity areas. The texture areas now are extracted 
by comparing the original image, with the diffused counterpart. The absolute differences are 
readily estimated, to extract the texture information. The third representation implies a non- 
parametric edge-detection method using Parzen kernels [4]. This estimates the edge location and 
it was concluded that it produces better registration results compared to the other two 
representation schemes. 

Based on this representation, the image registration is carried out by means of GA 
optimization and the final results are refined using multiscale optical flow as described in 
previous sections. 



Figure 1: An example of a visual (first row-left column) and a thermal image (first row-right 
column) of a similar scene. The LoG energy representation is depicted in second row, the 
subtractive diffusion representation in second row, and the probabilistic edge detector in third 
row. The last row show the result obtained firom the last representation. 
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TASK-3: TRACKING TARGETS AND SPN FORMATION OF PATTERNS 

1. DETECTING AND TRACKING MOVING OBJECT IN SEQUENCES OF IMAGES 
In the previous effort (Sept.2004) we have generated the first results fi:om the merging of 
the Pixel Flov^^ Functions (PFF) method with the Local Global Graph (LGG) method for 
detecting changes and patterns in sequences of images. Some problems were reported 
with the sensitivity of the PFF method. Here, most of these problems have been resolved 
using pre-filtering and the LGG method with segmentation, and results are presented 
below. Also, the next step is to detect and extract the target patterns or differences and 
define their formation. 

1.1. Spatio-Temporal Diffusion on Real-Tracking Changes in Sequences 
First Frame Second Frame Third Frame 
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PFF's are strongly influenced by noise and coding artifacts, when employed for detecting 
differences without any pre-filtering process. On the other hand, PFF's are very efficient 
for tracking the previously recognized and segmented objects. 

1.2. Aerial Pictures with PFF Method and Segmentation 
0. Original Images 
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1.3. Intensity Histogram 
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1.4. Calculation of Gradient Magnitude and Orientation      _ 

■;:£e<a. 

Image 1 



Image 2 

Image 3 

Image 2 
Hnta^ftny FutKtlott 

Hi9ft)i3ra«i Ftidrtwo 

( 
X 

\                                    ...x «i       t«       et       e«        t        *! 
Cumuiativt Function h      .; 

CumulMh'ft Fuoctbn 
■      "       ■■      / 

^ 
r   '■' 
t 

Image 1 Image 2 Image 3 
In the above histograms it is obvious that the horizontal orientation is dominant in these three 
images (maximum probability for cos(a)=I=>a=0). A second conclusion is that the second and 
third images we have a remarkable percentage of pixels with diagonal orientation 
cos(a)=0.7=>a~45 degrees). In the first image this does not hold. In the first image it is obvious 
that the edges have either horizontal cos(a)=l, or vertical coas(a)=0 orientation. 

Another Option is to attempt to detect the shadows of the buildings which have low intensity 
values. 
The application of a thresholding operation produces the following result below. We can see that 
the apart from the building shadows some other irrelevant dark areas have been detected too. 
Similar results are produced when a double thresholding operation is applied. 



2.   TARGETS TRACKING IS SPN FORMATIONS 
Motion detection, recognition and tracking are also challenging problems[8]. These problems 

are associated with the representation of the objects to be detected, recognized and tracked. A 
good representation of an object offers a better detection and recognition performance. In 
addition, a priori knowledge of the 3D object views contributes to an accurate detection and 
recognition-tracking. Some techniques use perceptual constraints among various 3D primitives in 
space in order to group them and reconstruct the underlying surfaces [1,2]. Some other techniques 
use probabilistic approaches for detecting and tracking multiple objects [3,4] and others non- 
probabilistic ones [5]. The methods above present some difficulties in distinguishing various 
objects when they come close to each other. Some methods with a good performance are based 
on the multiple hypothesis tracking algorithm that provide a Bayesian framework for motion 
analysis of multiple objects[6-8]. These methods offer the advantage of handling statistical data 
associated with tiie initiation, termination and assigning measurements to tracking. In addition, 
most of hem make use of the Hausdorff algorithm, which employs the model based matching 
that preserves the shape and view point information of the objects offering a more robust tracking 
[7,8]. The methods mentioned above offer very good results in case the detection-tracking of 
motion is real in the navigation environment and not a projection on a wall, like a movie. In oxir 
case we intend to use range sensors images for accurately detecting real motion. In addition, for 
the recognition part we make use our 3D recognition model, which is based only on six views of 
an object. In other words it synthesizes others views from the models of those six [10,11]. In 
order to make our methodology robust, we plan to employ both an image and range based motion 
detection and tracking techniques. 
This is an example of a moving target (tank) on a road with trees. Our method was able to detect 
track and extract the target under noisy conditions (the target was partially covered by bushes and 
a tree in the last frame). 



Steps of the Objects Tracking Algorithm. 
A. A spatio-temporal anisotropic diffusion method is first applied that uses the information 

of the current, previous and next frames in the sequence. This method is based on the anisotropic 
diffusion theory [PeronaMalik] by inserting a temporal variable in the heat diffusion equation. 
This smoothes out adaptively the areas of spatial and temporal homogeneity. 

First 
Frame 

Second 
Frame 

Third 
Frame 
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Figure 2. 

B. A watershed based segmentation algorithm is applied on the diffused image. This will produce 
higher segmentation detail in the areas that are not spatio-temporal homogeneous, see below. 



C. The Displaced FrameDifference is estimated between the Dif&sed frame and the current 
frame, see above. 

D. A process to identify the active regions follows. First, the level of activity is calculated as 
the ratio of the sum of dfd pixels in a watershed region over it's area. A thresholding operation 
follows to detect the most active areas in the frame which are also decomposed into watershed 
regions. Areas of high activity divided into watershed regions, see above the last picture. Below 
are examples from different fames: 
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SPNG Associations 
The SPN graph Model 

A Petri-net model is a more than 40 years old methodology developed by Petri. Since then, 
thousands of publications and numerous of variations and applications have been presented 
around the globe. An SPN is graph of an object that has k different states (Places Pi, i=l,2,..k). 
Each place Pj has its own structural features transferred from the corresponding graph node Nj. 
The transitions ty and ta represent relationships among the same parts of a target and a stochastic 
distribution of time required to fire that transition. Here we make use of the stochastic Petri-net 
(SPN) model in a form of a graph and we take the advantage of the SPN properties (timing, 
parallelism, concurrency, synchronization of events) for our synergistic methodology [8,10,11]. 

Here we presents the results of SPN graphs associations for detecting formations from moving 
targets or pattems, see figures 3,4,5. More specifically, when the changes are detected and 
tracked in different frames, the Local Global (L-G) graph method is used to establish a local 
graph for each region. These region-graphs then associated for developing the global graph that 
associated all the region-graphs. This is the association pattern that represents the formation. By 
tracking these formations we have better understanding of the changes that take place in 
sequences of frames. 

Figure 3: It shows the SPN graph associations for formations (frame No-4) 
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Figure 4: Formations taken from different moving patterns of targets in different frames 

Tracking Patterns of Formations 
In this sub-section we present the SPN graph formations. In particular, in each frame the changes 
based on motion are detected and extracted and their shapes are isolated from the background 
image. Then, these shapes, that may represent moving targets or objects, are described by using 
Local graphs and their relative locations in the frame is associated with Global graphs. This 
means that these changes (objects or targets) are fully represented by the L-G graphs. At this 
point, we take these L-G graphs representations (or formations) from each frame and we again 
associate them with SPN graphs in order to explain (or represent) their transitions from one frame 
to the next (or from one state to the next). As it is knovm well SPN is capable for representing 
state transitions efficiently [1,2,12,13]. Figure 5 shows four frames, their L-G graphs formations 
and the associations of these formations into global formations that show the transition (flow) of 
each change (or target) from frame to frame. Colors are used to illustrate the transitions and flow 
using token, which represent the cause of these transitions. In this particular example the token 
are associated with traffic rules. The important conclusion here is that these formations and their 
associations can be used to predict the behavior of the pattems of formations. 
In the example presented here, the traffic rules provide the necessary information that assist us to 
project the new formations of these changes. 

a. 

Figure 5: Tracking pattems of Formations in different frames. Due to limitations of colors only 
4 pattern formations are illustrated. The SPN graph represents the transition from one state to the 
next. The circles represent the tokens that activate the transition. Due to the complexity of the 
diagram only a few tokens and transitions are presented in this picture. 
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TASK-4: RECOGNIZING PATTERNS OR OBJECTS 

1. Introduction 
For image understanding and object recognition, many methods are proposed. The robustness 

of a recognition system, however, is imder a major challenge when the background is highly 
textured and the discrimination among included objects in the same scene is not well determined. 
Moreover, the lack of structural information of different objects with similar texture 
characteristics could be wrongly classified into the same category. In [8,9] the authors consider 
the object spatial relationships as the measure of image similarity. In [7,10,29] a closed-form 
representation for a model and an object is used . Thus, the shape similarity is expressed as the 
amoimt ofthe model deformation energy needed to align two shapes. This method can match an 
object with deformation other than rigid transformation. But it assumes that the shape has been 
segmented from the background, and the mathematic shape representation is sensitive to some 
kinds of deformations, for example, a cut in a ring. 

Wavelets and multi-scale methods are proposed to match 2-D shapes [4,11,14,17,38]. Those 
methods use coarse-to-fine representations to match 2-D shapes. Since they consider an object as 
one solid region, those methods are not appropriate to multi-region object recognition. The shape 
is also represented by its border points or by primitives, such as lines or splines [14,16] and then 
the object's shape similarity problem becomes a point sets similarity problem [1,5,12]. 
Huttenlocher et al uses an efficient algorithm to compute Hausdorff distance between two point 
sets to recognize an object [1]. The similarity fimction could be a post-probability fiinction or 
Hausdorff distance. These methods only compare and recognize single shapes. If the object is 
composed of several parts, they cannot perform recognition since no object structure is 
considered by these methods. Generally, they require relatively clear and accurate object shapes, 
i.e., they skip the segmentation step and assume that an accurate shape is available. It is not 
always realistic. 



One of the most widely used and quoted curve fitting approaches was presented by Pavlidis 
[26]. It sets a maximum deviate threshold as a fitting criteria. Any point that falls in this error 
bound can be fitted by a current line segment. However, it is too simple to give satisfying fitting 
results, especially when the interested region has both a long edge and rich details. In [34] the 
authors proposed a multi-primitive fitting method. The breakpoints of the curve are divided into 
comer and smooth joints. Fitting is done between consecutive breakpoints and it is threshold free. 
However, for a curve with noise, this method will create erroneous breakpoints and degraded 
fitting performance. In [19] the authors used circular arcs and ellipses respectively to represent 
curves. The methods are good when the object has circular or ellipse shape. Otherwise, they do 
not show much fitting performance improvement but have high computation complexity. 

The graph method is used to apply spatial constraints to key nodes. There are many ways to 
represent graphs, such as Voronoi Tessellation and Delaunay Graph [19-22]. For the recognition 
of a pattern, or a model different graph-based techniques have been proposed. In particular, a 
graph editing method is used to compute graph distance and, in turn, the graph distance becomes 
the measure of image similarity [2,13]. Sub-graph isomorphism techniques are employed for 
perfect matching of one graph part with another graph [15]. 

A graphical template is also proposed to generalize the graph registration problem [3,5]. In [3] the 
authors use decomposable sub-graphs of the template graph to find the optimal match to a subset 
of the candidate point set. In [5] also the authors use the Dual-Step EM registration algorithm to 
solve the point-correspondence match problem. Generally speaking, the point registration issue is 
the bottleneck of a graph matching process and currently there is no method that can solve all 
registration problems. In our method, by utilizing region information in each graph node, the 
complexity of finding point correspondence is greatly reduced [6,24,30-32]. 

Relational graphs are considered as a good approach to describe pictures or scenes for 
pattern recognition [2,18,24,26,27,28]. In [2] the authors used a relational graph to represent 
characters. They proposed descriptive graph grammars as rules to organize and compare 
graphs. In [28] the author used a relational distance measurement for model-based matching . 
There are, however, some common limitations associated with graph matching problem. First, 
the matching of the model to the data image is node location driven. In other words the matching 
criterion is minimizing the mean square over all pixels of the difference between the model and 
the data image. This does not ensure that specific points of interest or landmarks be matched with 
great precision. Secondly, because of the inherent non-linearity of the problem, and the fact that 
the deformations are highly dimensional, the computational tools for calculating the match must 
use relaxation techniques, which runs the risk of converging to a local minimum that corresponds 
to a poor match. 

The proposed here Local-Global (L-G) graph method adds local part information into the graph 
[24]. The graph is a more accurate representation of an object. Thus, a non-linear graph matching 
ftinction is avoided and by combining the Fuzzy-like Reasoning Search (FRS) method and the L- 
G graph method the object recognition accuracy without increasing computation complexity is 
improved. The robust recognition of objects in complex images is still an open scientific problem 
in the computer vision field, as mentioned above. In this paper the use of the L-G graphs assists 
the synthesis of segmented regions [06] for creating a desirable object with a maximum 
confidence against a database of known objects. In addition, a graph based incremental learning 
process takes place during the synthesis of regions to define new complex objects. 

2. Region Contour Fitting and Local Region Graphs 
Notation : GM and Go are the graphs of an object model and an image respectively. Mand D are 
the graph node sets of an object model and an image. EM and ED are the graph edge sets of an 
object model and an image. 
Notation: The edge set is bi-directional. 



2.1 The Border Curve Fitting 
After the application of an image segmentation method, a set of color regions are generated. 

The normalization process of the region's borders leads to an appropriate curve fitting approach, 
which will assist the generation of the region graphs and the synthesis of the neighboring regions. 

In this section we present our approach to curve fitting. The key point of the curve fitting 
accuracy is how to select the deviate threshold [30]. It generates more fitting lines for large-scale 
images than small-scale images, even if they contain an identical scene. To fix this problem, a 
relative line fitting threshold is used here. 
The relative error ihrd is a threshold proportional to a current line segment's length, th^e! is defined 
as 

threi = min(th„ax, max(Len *p, th^i^) (1) 

where Len is the length of current line segment, p is predetermined percentage, th^ax and th„i„ are 
two extreme thresholds. For long segments, it tolerates big deviate error and for short segments it 
uses a small threshold to produce accurate fitting results. But it still cannot fit well at the end of a 
long line segment. Because of the large Len, it sets a large threshold threi- The big threi may merge 
pixels that follow the current line segment though they have a very different trend. Figure 1 
shows this example. 
The fitting error gating technique presented here uses a new fitting-error boimd computing 
approach and can offer a reasonable solution to the problem. A smiilar approach for fitting 
straight-line segments with unevenness was proposed in [35,36]. 

The Fitting Error Gating (FEG) Technique 
The FEG approach djTiamically determines the fitting deviate bound at every fitting step based 
upon the current fitting error. In the fitting process, we try to use the minimum number of line 

r 

Figure 1: Relative threshold Curve fitting example 

segments to fit the 
border curve, i.e., at every step we try to fit the most possible points with one line. Here, a fitting 
line has to pass the start and the end points and fit, or it has to be as close as possible to the 
majority of the rest of the points remaining. This requirement ensures line connectivity, which is 
a prerequisite for the generation of the local region graph. 
Thus, the main curve fitting process steps are: 

1. Set initial fitting Err. 
2. Set the starting point pts as the first point and the ending point pte as the last point. 
3. Compute the fitting linefitnction y=Ln(x). 
4. Compute the fitting deviate threshold th based on the Err. 
5. Compute the new fitting error Err and the maximum deviate error Era. 
6. if Era >th then pte = (pts + pt^/2; goto step 3 



else 
if(pts =firstpoint &&pte =lastpoint) \\ (pte-pts <=1) then stop 
else pts = (pts + pt^/2; goto step 3 

The curve fitting method works similarly to the known binary tree technique, because at every 
step the possible vertex (or stop point) range is narrowed down to half of current range. For a 
curve length of « (points), the maximum fitting steps are [log(n)]. The search process is illustrated 
in Figure 2 and the FEG in Figure 3. 
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Figure   3:   Fitting   error   gating 
metlnod result 
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At this point, the current average fitting error as a gate factor GT(n)is: 

(2) 

where n is the total number of fitting points, and e, is the distance fi-om /,/, point to the fitting line. 
Also, the maximum deviation error, Erj, is computed at the current fitting step. 

(a) Original object (b) Fitted with relative threshold      (c) Fitted with our method 
Figure 4: Curve fitting example 

Thus, the djTiamic error bound is computed by considering the gate factor GT(n) 

threi = mm(thmax. SE(GT(n)), max(Len *p, thmin>) 

where the fimction SE(x) is defined as 

(3) 

SEix) = 
Er., if x< th, GT 

X ■ Er^ I th^-j-,   if x> thgj 
(4) 



where Erj is the maximum deviate error of the current fitting, thcr is the gate factor threshold. 
In equation (3), if GT(n) is smaller than thcr, it means all points in the current fitting point set are 
close to the fitting Une (least square error). For the human's perception point of view, it is an 
accurate fitting of the current point set; in other words, any change of this fitting line segment is 
more likely to degrade the fitting performance, i.e., generate erroneous fitting results. In this case, 
SE() returns the current maximum deviate fitting error. Also, the maximum fitting threshold will 
be confined to no more than Erj. If GT(n) is bigger than thar, SE(GT(n)) returns a value 
proportional to GT(n). For example, in figure 1, the borders of character T are perfect horizontal 
and vertical lines. The fitting error GT(n) is 0. Thus, at the next fitting step, the fitting threshold is 
set to 0. Thus, only points with the same trend will be fitted by the current line. It excludes the 
points that belong to other lines. The fitting result is shown in figure 3. Thus, it has a relative 
error threshold characteristic, i.e., generates a long line segment in a low frequency area and a 
short line segment in high firequency area. In addition, with the application of the error gating 
technique, the fitting performance is improved. Below is another example. This method 
mentioned above offers a better accuracy versus original methods proposed in [19, 26, 34, 35]. 

2.2 The Local Region Graph [2, 26,31] 
From the curve fitting result, we build the local graph of the current region. The border curve is 
represented by connected lines. Thus, the shape is expressed as 

SH=Y{LnrRlj,,-Lnj,i} 

= Lnr Rl^ ■ Ln2'R^^ • Lm■ R^^ ■... Ln„.2■ RU.^.i' Ln„.i• i?;_, „ ■ Ln„     (5) 

where « is the number of lines,ye [1, 2,..., «-l], Lttj and Lrij+i are two consecutive curve lines, 
R'] j+\ is the relationship between Lrij and Lnj+i. 

The complete representation of a shape SH, however, requires the determination of two more 
factors. 

i. the individual properties P,- of line Lrij, 
Pj = {spfstartingpoint), l(length), d'(orientation), cu(curvature) } 

where the indexy indicates the appropriate segment, 
ii. The relationships RLy among the line segments 

RLij = { c(connectivity), p(parallelism), rd(relative distance), rm(relative magnitude), 
sy(symmertty) } 

where, the sub index ij means the relationship between line i and line7. 



Thus, the line segments Ln, their properties P,- and the relationships Ry among the segments are 
defined for a sufficient description of the current region shape. Figure 5 shows a sample region 
and its local graph with attributes. 

(a) Line fitted object (b) object's local graph 

Figure 5: This is an example of local graph. Left image is the object or a single region. The number 
besides every line is the index. Its local graph representation is shown on right. For simplicity, only 

3. Wavelets for Contour Matching 

3.1 Single Region Matching 
The starting point of the curve matching problem is to match a single region object. In particular, 
we suppose there are two closed curves f(t) and g(t) and assume g(t) is the transformed 
counterpart offft). The goal is to recover the parameters of a geometric transformation matrix that 
best maps a curve g(t) to fft). We represent each point in the region point set in its homogeneous 
form. 

3.1.1 General Geometry Transformation [37] 

In order to assist the reader in imderstanding this concept we briefly present the geometry 
transformation here. We consider a closed 2D curve, f(t), where / denotes a parameter. A 2D 
curve can be determined by its Cartesian coordinates of all points. Thus a curve is defined as 

'x(ty 
f(t)= y(t) 

1 

t=l,2,...,m 

where m is the total region point number, dXiAg(t) is the transformed form oif(t). 
Generally, the basic geometry transformation is composed of translation, rotation, and scaling. In 
the case of the affine transformation, which includes reflection and shearing, there are six free 
parameters. These model the two components of the translation of the origin on the image plane, 
the overall rotation of the coordinate system, and the global scale, together with the parameters of 
shearing and reflection. These parameters can be combined into an augmented matrix that takes 
the form [37] 



<p\,\ <I>U2 <^1,3 

<^2,1 <I>1,2 ^2.3 

0 0 1 
<l>= 

The solution for six parameters simultaneously is very difficult. In order to simplify this problem, 
we assume there is no shearing and reflection transformation (in fact the reflection transformation 
is considered later). Thus, the transform matrix with translation, rotation, and scaling, can be 
expressed as 

</,= 

rs. 

rs.. 

ra. 

rs 
yx 

0       0 1 

and the transformed curve g(t) is, 
g{t) = S-M,-f{t) + T 

x\t) ^^x. "■'^ 

trs^ x{t) 

y\t) = rsy.. rsy. trs^ • y{t) 

1 0 0 1 1 

(6) 

The four elements rs^j^ where ij take values x and y, are the multiplicative rotation-scaling terms 
in the transformation that involve only rotation angles and scaling factors. Elements trs^ and trs^ 
are the translation terms containing combinations of translation distances, pivot-point and fixed- 
point coordinates, and rotation angles and scaling parameters. 
The scaling process can have different scale factors for the x and y coordinates, s^c, Sy. It deforms 
object contours with a different ratio in the x and y directions. Note that most of the imaging 
elements have the same scale factor in both x and _v directions. Thus, we set the scale factors for 
bothX and;' directions the same, i.e. 

S = Sx— Sy, 

The scaling matrix S is reduced to s, that is 
g{t) = s-M,-f(t) + T (7) 

3.1.2 Translation parameter 
The translation matrix Jhas two elements t, and iy. Let Fce„{fC)) be the function which computes 
the centroid of curve/f/ In the geometry transformation, rotation and scaling don't change the 
centroid location (xo, yo)- Thus, 

■^ T=F,M(t))-Kenim) (8) 
Since the centroids of the two curves are known, we move their curves centroids to the origin 
point. It will simplify the following process. Figure 6 shows an example . 



Figure 6: Translate parameter example Figure 7: Scale parameter example 

3.1.3 Scale parameter 
To find the scale parameter the momentum is chosen. The momentum is a measure of an object's 
mass distribution. It is defined as [38] 

1   ^ 

Ntt centroid || (9) 

where A'^ is the number of curve points, m,- is the mass weight at point /?,, Pcentmid is the centroid 
point of the closed curve. Finally, ||'|| is a kind of norm, such as a Euclidean norm. 
If the object's mass is evenly distributed, m, becomes a constant value. Then, the momentum 
Mom is determined merely by its point distribution, i.e., determined by its shape. Thus, Mom 
becomes an object geometry shape description [25]. 
Translation and rotation do not change the shape of an object, so Mom is identical before and 
after translation and rotation. Thus, the momentum Mom' after scaling is, 

1   '^ 
Mom' =—y/M, •llp'.-p' 

1 '^ 
=—y wj, • h ■ Pi 

centroid^ 

-s-p centroid 
(10) 

1 '^ 

= s • Mom 
The scale process affects the curve parameter linearly, but the momentum ratio is proportional to 
the square of the scale factor, /. 
Thus 

1/2 
f Mom' 

Mom 
Figure 7 shows an example of adjusting scale parameter. 

(11) 

3.1.4 Rotation parameter 
We suppose that the curve f(t) is generated by rotation of the curve/(I?) by angle 0. The rotation 
is obtained on/(1f/s centroid. The rotation matrix M is defined as [37] 

cos^   -sin(^ 

sin^     cos(^ 
M 

the rotated curve f(t) is computed by 



/'(0 = 
xity cos^ -sin(^   0 xit) 

y(ty = M*f(t) = sin^ cos^    0 * y(t) 

1 0 0        1 1 

(12) 

The problem associated with the equation (12) is that we do not know the point correspondence 
yet. When the rotation angle 0 is computed with the equation above, if x(t), y(t) will be 
substituted with a point on curve/(y, the correspondent rotated point onfft) is unavailable. In 
order to solve equation (12), the right point mapping order has to found. 

3.2 Wavelet Coefficient of Border [4, 37] 
Because of the advantage of the multi-resolution analysis ability, the wavelet technique is used to 
solve the rotation matching problem. A wavelet is defined as 

^...(0 = -^K—) (13) 

where w(t) is the initial wavelet, a is a scale coefficient and 6 is a shift coefficient. 
One good property of wavelets is that its integral over all t equals to zero. 

h (14) 

The computation of the/(^'s wavelet transform produces its wavelet transform coefficient Ca,b 

Ca, = \m-yf.,{t)dt (15) 

Under rigid motion and the affine transform, the curve/(if^ can be shifted, rotated and scaled. But 
its shape doesn't change under this kind of transform. We can substitute f(t) in (15) with its 
transformed version [4]. Let f(t) be the transformed curve. Thus 

where s is the scale coefficient, M is 2x2 rotate matrix and J is 2x1 translate vector. 
Our interest is to find correlation between/(^ and/"(it). Let's exploit thef(t) wavelet transform 
coefficient. Here, we use the same wavelet basis y/a,bi^) 

c\,b = \nt)-w.At)dt 

= s-M \f(t +1,) ^„,, {t)dt + T \y/,_, {t)dt 

from (14), we can simplify (17) as 

(17) 

■ s-M\f{t + t,)-w{!—^)dt (18) 

= s■ M -c a.b+lg 

Thus, we know that a curve can be reconstructed by its wavelet transform coefficient; hence, the 
transformed curve can be generated using the transformed wavelet coefficients with the same 
wavelet bases. By this way, we bypass the tough point-to-point correspondent task. 
The Equation (18) shows if we can solve s, M and to, the matching problem will simplify to 
wavelet transform coefficient matching. Since the scale factor s and translate matrix T have been 
recovered, the only two variables here are the rotation matrix M and shift parameter to- 
The rotation matrix M is determined by the rotation angle 6, so we define the wavelet coefficient 
error function Ey,(d,to) as 



Notice here that the scale factor s is known, 

= ll'y-^-C«,A«„-C,.fc 
(19) 

3.3 Univariate Search [38] 
If we can find the minimum of error ftinction Ey,(6, to), then the value 6 and to at the minimum 
error fiinction value are the transformation parameters we need. Because of the increased 
computational complexity associated with changing all variables simultaneously, it is difficult to 
find the minimum value by computing all possible variable values. Practically, we have to 
consider techniques to reduce the total amount of computation. One solution is the univariate 
search method . In order to compute the minimum value of the multi-variable function Y=J{xi, 
X2, ..., x„) a feasible way is to change the variable one by one. Suppose that the variables are 
changed in their natural order, i.e., xi, X2, ..., x„ (if this is not desired, they can always be re- 
numbered). The guiding idea behind univariate search is to change one variable at a time, thus, 
the function is minimized in each of the coordinate directions. The search process is graphically 
illustrated in Figure 8. 

Figure 8: Univariate Searcli 
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Figure 9: Tliis shows a complete example of single region matching, (a) Model region (b) Object, (c) 
Original shapes, (d) After translation adjusted, (e) After scaling adjusted, (f) Final matching result. 

Note that the SearchMinValjc/(/o) and SearchMinValjc2(0) are search fimctions used to find the 
to and 6 to make the error function minimized along the directions xi and X2. 

Figure 9 shows an example of comparing single region using wavelets. It is also important to be 
mentioned that the local region graph is used as a criterion for determining the scaling threshold 
of the wavelet. 

4. Matching Multiple Regions with the L-G Graph Method 
For an object composed of more than one regions, the shape of every region cannot ensure two 

scenes are similar. If one scene has the same regions as another scene but arranged with different 



relationship, these two scenes are totally different no matter how similar every region pair is. 
Here, the spatial relationships between corresponding regions represent an important constraint to 
the matching process. The location of spatial features serves as a natural choice (as landmarks) in 
relating multiple views of real world scenes. Differences in images of the same scene may be 
induced by the relative motion of the camera, or different illumination and the scene itself. 

Rather than using the shape constraints to establish similarity correspondence, we use the 
constraints provided by the spatial adjacency of the regions. These constraints are relaxed by 
separately triangulating the data and model regions [23]. We use the neighborhood consistency of 
the correspondences in the triangulations to weight the contributions to the similarity function. In 
part of this section, we describe how the relational consistency is used in the matching process. In 
particular, we abstract the representation of correspondences using a bipartite graph. Because of 
its well-documented robustness to noise and change of viewpoint [21-23], we use the Voronoi 
Tessellation method, along with the Delaunay triangulation and the Local Global graphs as our 
basic representation of the image structure. 

4.1 Voronoi Tessellation and Delaunay Graph 
The dot patterns corresponding to the local feature positions of objects may prove to be 

relatively insensitive to 2-dimensional geometry transformation [23]. In addition to the 
transformation, the objects of the image scene may be noisy. The matching problem can be stated 
as follows: given two dot patterns, we want to know if one is a rotated, translated, and scaled 
version of the other. By using Voronoi tessellation and Delaunay graph, the pattern-matching 
problem becomes a two dot-patterns match problem. Given two dot patterns, one is called the 
Model pattern, and another, called the Object pattern, which is a rotated, translated, and scaled 
version of the model pattern. In [27] the authors consider matching with respect to translation, 
allowing perturbation of a point by at most a given threshold t. They attempt all possible 
translations that map a pair of points in one pattern onto a pair in another pattern, within the given 
tolerance t. In [39] the author compares the minimal spanning trees of the patterns in order to 
determine their degree of match. He attempts a matching between points in the two patterns with 
respect to the degree of the minimal spanning tree at the points, angles formed by the lines joining 
the points to their neighbors, etc. good matches are sued to establish correspondences between 
points in the two patterns. In [41] the author matches patterns by comparing ordered lists of 
boundary cells. This should have the effect of aligning the borders of the two patterns, thereby 
suggesting the potentially matching point pairs in the interiors of the pattems. 
One limitation of the above methods is that they use the point position but do not use any 
information from the image or the image-region. Thus, basically they consider only the dot or 
point geometry relationship. Moreover, another limitation is that no point correspondence 
information is available in the dot pattem. They either need to permute all possible combinations, 
or use border shape to find the point correspondence. 
Recently, in [38] the authors proposed a method that uses a dual-step matching method. The 
matching process alternates between estimating transformation parameters and refining 
correspondence matches, i.e., point registration. This approach recovers transformation 
parameters very efficiently. Nevertheless, in order to obtain a good result, the key points in the 
object have to be defined prior to match. 

Suppose that we are given a set S of three or more points in the Euclidean plane. Assume 
that these points are not all collinear and that no four points are co-circular. Consider an arbitrary 
pair of points P and Q. The bisector of the line joining P and Q is the locus of points equidistant 
from both P and Q and divides the plane into two halves. The half plane HP/HQ is the locus of 
points closer to P(Q) than to Q(P). For any given point P, a set of such half planes is obtained for 
various choices of Q. The intersection I Q^S,Q*P ^P  defines a polygonal region consisting of 



points closer to P than to any other point. Such a region is called the Voronoi polygon associated 
with the point [22]. An example of the Voronoi tessellation is shown in Figure 10. 
The points, whose polygons share edges with the polygon containing a given point P are called 
P's 
Voronoi neighbors. 
The process of Delaunay triangulation generates relational graphs from the two sets of point- 
features. More formally, the point-sets are the nodes of a data graph 

GD={D,ED] 
and a model graph 

GA,= {M EM} 
where D and Mare the node sets of data (image) and model respectively. And the EDC^DXD and 
EM^MX-M arc the edge-sets of the data and model graphs. The key to the matching process is 
that it uses the edge-structure of Delaunay graphs to constrain the correspondence matches 
between the two point-sets. This correspondence matching is denoted by the fiinction/ D -¥ M 
from the nodes of the data-graph to those of the model graph. According to this notation, the/('j) 
=_/ indicates that there is a matching between the node ieD of the data-graph to the node/eMof 
the model-graph. 
A Delaunay graph is robust to noise and geometry transformation. In another word, if the node set 
undergoes any kinds of transformations, the new Delaunay graph is the transformed version of 
the model Delaimay graph, with the same transform parameters. A simple example to show 
Delaunay Triangulation is invariant to translation, scale, and rotation, is shown in figure 11. 
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Figure 10: Voronoi Tessellation and Delaunay Graph    Figure 11: Delaunay graph of translated, 
rotated, and scaled point set 

4.2 Region Node and Local -Global Graph 
In the L-G graph scheme, the graph node is not a point but a region. Every node in the graph 

has not only point position information, but also all the characteristics of the region that it 
represents. 
We define every node in the graph as 

node = {(x,y), color/texture, L, border, size) 
where 

(x,y)     is the location of the node, which is identical to a correspondent region's 
centroid. 

color    is the chromatic information of the region, the HSI color model is used. 
texture is a region's texture 

L is the local graph associated with this node (region). 
border is the object contour pixel set. 
size      is the number of all pixels belonging to this region. 

Texture is a well-researched property of image regions, and many texture descriptors have been 
proposed in the literature. Despite that, texture definition and representation remains an open 
research topic. We do not go deep here on the classical texture approach, but it is utilized in 
another work of ours. After introducing the local graph information into the global graph scheme. 



the new method can handle both local (region) and global (object) information in the matching 
process, thus, we use the L-G graph to represent the new local-global graph method. 

4.2.1 Represent image with L-G graph 
Because the segmentation result is available here, we combine the L-G graph with the 

segmented region by means of the above definition. The fuzzy-like segmentation method divides 
the image into distinct regions. Every region is a characteristic of the image. The node has not 
only spatial location but also other region information, such as color, texture, etc. As previously 
defined, the object and model L-G graphs are: 

GD={D,ED), GM={M,EM] 

where D and Mare node set; Ep and EM are edge set.    A node set is defined as 
NS = {nodci, i=l,2,...,« }, n is the total node number 

Edge set £ is a « x« matrix and defined as 
[l,   // node^ connects with nodcj 

[O, otherwise 

Below is an example of a Z^G graph, figure 12. 

(21) 

5. Comparing Graphs 
Generally, matching two graphs is in order to find the point correspondence between two 

graph node sets, which maximizes the likelihood between the two graphs, given the spatial 
constraint [3,5,30]. If the geometry position is only available, the matching process in general 
requires a permutation algorithm or a recursive method. In our scheme, the node correspondence 
can be solved by using the region color and the shape similarity, which can bypass the recursive 
or permutation method and reduce the computational complexity. Suppose the node 
correspondence has been established. Now the problem is how to compute the similarity between 
those two graphs, given the node correspondence, considering the geometry translation. Because 
the node correspondence is known, the graph similarity is determined by their relative spatial 
connectivity. In other words, the translation, rotation, and scaling do not change the graph spatial 
structure. The spatial structure of the graph is mainly represented by the angle, i.e., if the 
correspondent angles between arcs are similar, the graphs are similar too. We can prove that if the 
angles are matched to each other then two graphs' structures are also similar. 

We define the angle similarity function SANGSIM(.^0) by using two thresholds. One is 0,HI, the 
lower bound of angle difference, and the other is 0,H2, the upper bound of angle difference, see 

Sim 

Figure 13: Compared nodes Figure 14: Angle Similar Function 



figures 13 and 14. The similarity between correspondent angle is computed by the function 

(Ae) = JANGSIM' 

The total similarity between two graphs Simc is 
N       N 

1, 
02 -t^e 
e, -e, 

0, 

e^>t^e>e^ (22) 

Ke>e^ 

^™«= T7E S^O''^")-'^ANGSIM(^,,, -^,0) (23) 

where N is the node number, O/j is the angle of edge (ij), 6to is selected as the based angle for 
every node. The based angle dio can be selected as the angle of the first arc associated with node i. 

5.1. The L-G Graph Matching Scheme 
The key idea behind the L-G graph is to use the local graph similarity as a constraint to the global 
graph. Thus the matching complexity can be reduced to an acceptable extent. This is the point 
where the L-G graph method surpasses other graph matching approaches. 

Finding the node correspondence and the PCRP permutation 
In our scenario, the node is a region. Here, every region is a meaningful part or characteristic of 
the interested object. We define that only regions with similar characteristics can be considered as 
a Potential Correspondent Region Pair (PCRP). Random matching of one node in the graph with 
nodes in another graph is not reasonably acceptable. 
In the human perception system, color plays an important role in recognizing objects. It is 
reasonable to link node pairs that have similar color. The method proposed in this paper does not 
allow one node to correspond to nodes with very different color. For example, a red region, such 
as an apple, cannot correspond to a blue region, such as sky. The case of different colors is 
examined in [24,40]. Suppose a model set Mhas 7/nodes. A threshold the is chosen to filter out 
dissimilar nodes in the data graph. The process is: 

1) Initialize PCRP table, which has n entries, where n is the region count in the model 
graph. 

2) For every region in the model graph, we compute color distances with all regions in the 
data graph. Any region with distance less than threshold the will be added into current 
PCRP table entry. 

3) If none PCRP is found for a current region, an ERROR is returned. 
4) Table Entry index increase 1 and go to step (2). 

Figure 12 shows an image, which has the ironer. The ironer model, a Delaunay graph is shown in 
figure 12 as well. Figure 15 shows the image's its segmented view. Figure 16 shows a complete 
example of selecting PCRPs and comparing the L-G Graph generated from the PCRP set. 
After building all PCRP graphs, they are compared with the model graph shown in Figure 12. The 
equation (23) is used to compute the similarity value between the PCRP graph and the model 
graph. All the results are shown in Table 1. Figure 16 shows all PCRPs in the image. 
Remember, the PCRPs are selected only based on their color similarity. We have not applied any 
geometry and relationship constraints yet. The combinations of all PCRPs have 16 possible 
graphs. Figure 17 shows all the PCRP graphs. 



Figure 15: Data Image. Left is the original image and right is segmented by FRG method. 
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Figure 16 PCRP selection of every region, (a), (b), (c), (d), (e) and (f) correspondent to a region in the model, respectively 

Table 1: Graph comparison result. All possible graphs from PCRP are compared with a model graph. 
There are 16 PCRP graphs and their similarity measure to a model graph are listed in the table. 

Graph 
index 

1 2 3 4 5 6 7 8 

Graph 
SimVal 

0.98 0.83 0.46 0.38 0.13 0.27 ^-M^M m;mi§m 

Graph 
index 

9 10 11 12 13 14 15 16 

Graph 
SimVal 

0.35 0.31 0.21 0.23 0.32 0^27 0.33 ''■y.W^:C-:. 
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Figure 17: 16 PCRP graphs from the examined image 



5.2 The L-G Graph Relationship Checking 
The example shown above indicates that only graph spatial constraints cannot ensure the finding 
of the right answer. In that example, two graphs are selected based on their graph geometry 
similarity. One graph is the right match but another is not. In an extreme case, it may have no 
right match in these selected graphs. Thus, we need to examine the validity further. 
One factor we add to equation (23) is the shape similarity previously computed. The graph 
similarity is measured by every node similarity. In equation (23), we assume every node pair has 
the same weight. Nevertheless by considering the shape similarity of the two regions associated 
with the node pair, a large weight value is given to a node pair with a high shape similarity, and a 
small weight is given to the node pair with a low shape similarity. The assumption is that if two 
node shapes are different, it is very likely that there is a wrong PCRP. In this case, even the PCRP 
has a high node similarity with its counterpart in the model graph, we still reduce its contribution 
to the graph similarity. After introducing the weight factor, (23) becomes 

Si^o= -^i; f,E{i,j)-S^^^,,Mj-0^o)-Weight{i,j) (24) 

Another element   that   helps the process   is the relationship between graph nodes. In other 
methods, graph nodes are only points in 2-D or 3-D space and have only geometry relationships 
among them [5,28]. In our scenario, every node represents a region, i.e., a character of the object. 
These nodes have a certain pre-determined constraint. 
For relationship checking, we have some basic assumptions. 

1. All regions in the model and object have only above four relationships mentioned above. 
2. Transformations should not change the correspondent relationships, i.e. if for the regions 

R, and R2, we have RL(Rj, R2) = RL(Ri', R2'). Otherwise, the matching fails. For 
example, contain and contained relationships are distinguishing characteristics, we do 
not expect that noise can drastically change such relations. 

3. We require a basic relationship to retain the contiguous relation as an exception. We 
accept contiguous -^separate and do further checking. 

We define four relationships between two regions - contiguous, contain, contained and 
separate. They are shown in Figure 18. Below is the relationship-checking table-2 

ConGguous Contain Contained 

Figure 18: Four relations between two regions 
Separate 



Table 2: The relationship checking table TRE. 

~\^^     Relationship - 
^\^        Model 

Relationship --\^^^ 
Data image           ^\ 

Contiguous Contain Contained Separate 

Contiguous 1 0 0 0 

Contain 0 1 0 0 

Contained 0 0 1 0 

Separate 1/0 0 0 1 

For any two regions Rl and R2, if their relationship in the image is r,2 and in the model graph is 
ri2', then the similarity relationship between these two regions is 

simREL= TiiE(ri2,r,2') 
The relationship between two graphs is determined by relation checking at every region between 
any two cormected graph nodes. 

N     N 

(25) 
1=1 j=i 

There is one relationship checking value undetermined in the table. If two regions are contiguous 
in the model graph but are separate in the generated graph, we do not classify it as violation of the 
relationship matching rule. Instead, we check the two regions spatial relationships fiirther. 
Because of the noise and light conditions, small noise or a shadow could separate two regions in 
the generated graph while they are contiguous in the model. Figure 19 shows an example. 

(a) (b) 
Figure 19: (a), (b) are part of the model 
image and graph. The two regions are 
contiguous, (c), (d) are correspondent part 
form data image. Because of the shadow, 
those two regions are separate. 

6. The L-G Graph Synthesis Method 
Although the L-G graph method applies spatial constraints to graphs, it may still generate 
mismatches. For example, when two potential correspondent nodes from the same model node 
are too close in the examined image, both L-G graphs are similar to the model graph. In this case, 
the graph-comparing method cannot filter out all wrong graphs even after region relationship 



checking. Figure 20 shows an example. Because the cloud color is similar to one of a balloon's 
part, the cloud becomes one PCRP. When we use this PCRP to replace the right node, a similar 
graph is generated. As a result, it could pass the graph similarity checking step, and due to its 
particular special location, it does not violate any region relationship. Thus, we need to find a 
way to exclude such cases and improve the matching accuracy. We still use the graph scheme, but 
now combined with the object shape information. We have used the shape similarity as a weight 
in previous matching steps. After the global graph matching, a potential region group has been 
found. This region group RD has a similar spatial structure to the model's structure RM- It is 
reasonable to expect that the object shape associated with RD should be similar with the shape 
associated with RM- If we can synthesize the region group to get the object shape, then the object 
shape similarity can be a criterion to determine the matching result. 
In order to obtain the object shape from the region shape, a shape synthesis method based on the 
local graph is proposed. In this method, regions are merged together to generate the object shape. 
The L-G synthesis method is: 

1) Build the local graph from the current PCRP set. 
2) Compare the local graphs. 
3) If the graph is similar and correspondent spatial connectivity is consistent, start 

synthesizing processing. 
3.1) Assign the first region to an active region. 
3.2) Select the next region. Find the common edge between it and the active region. 

3.3) If a common edge is found, synthesize the current region and the active region and 
assign the new region to active region. 

3.4) If all regions have been processed, synthesizing completes; otherwise, go to step (3.1) 

4) Compare the synthesized region with the model region. If similar, accept; otherwise, 
match fails. 
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Figure 20: An example of a mismatch, (a) is the original data image, (b) and (c) show two graphs 
with one PCRP change, (b) and (c) have a similar graph and also the same region relationships. 

6.1..Neighbor Region Searching by Local Graphs 
If two regions are neighbors, they have at least one common border. Consider the issue shown in 
figure 19, we define the common edge with broad sense —if their borders have a common shape 
and the common parts are very close in Euclidean space, they are neighboring regions. If the 
correspondent common parts have distance greater than zeros, then these two regions are pseudo- 
neighbors. 
Because we have introduced pseudo-neighbors, we cannot use the physical region border pixel 
location to compute the connectivity between regions. The region local graph represents its shape 



in a high level. We use the local graph to find the common edge between regions. The borderline 
graphs of two regions are Li, Lz. 

L] = Ln,Rl2 ■ Ln2-Rl-i ■ Lri}-R^^ ■... Z,«„.2-i?^_2,„_i • Ln„.rRl_^„ ■ Ln„ 

L2=L'n,Rl^'L'n2RyLn3Rl, •... i^« m-2 .R^-2,„-i'" ^« V/•/?^_i,„' • i«'« 

Suppose L] has n lines and L2 has m lines. If L/ and L2 have a common edge, a part in L] must 
match with a part in L2. We need to find if there is a partial matching and where it is in the two 
graphs. Now, we treat every element, line segment N and relationship a^, in line graph (L/, L2) as 
the character of a string. Thus Lj, L2 become two strings. Our next task is to find the matched 
sub-string in these two strings 

Li = C(iyC(2)-C(3) ... -Qn) 

L2 = C'(l)-C'(2)-C'(3) — • C'(m) 

Where C(i), i=\,l,...,max(m,n) is an element of a border-line graph. C(i) could be a line iV,- or a 
relation Rij. Suppose L2 is longer than Lj, i.e. m>n (if not, swap Lj, L2). Slide Li through L2 and 
compare "character by character". The comparison error fiinction is defined as 

fl,    iff(i,j) = true 

''■'     [0,        otherwise 

Sij is the result of comparing C(i) fi-om L] with C'O) fi'om L2; and ffij) is the comparison 
fiinction, defined as 

false,    ifC{i),C{j)havedifferenttype 

true,     if C(i), C(j) are relations and (c, p, rm, rd) « (c', p', rrri, rd') 

fihJ) true,     ifC{i),C(j)arelinesand\\Cii)\-\CU)\\<s„ o?) 
I angleidi)) - angld^CU)) |< s OR 

C{ilj)ispartofCiJli) 
false,   otherwise 

before comparing, copy Li itself at the end of Lj. By doubling Lj, this method overcomes a 
starting-point breaking problem. The object border is closed. But a starting point will separate the 
border into head and end. If the starting point resides in the matching part, it breaks the substring. 
This is shown in figure 21. 

Figure 22 shows an exmaple of finding regions common edges. The common edge between 
two selected regions are highlighted by "red" (double dot) lines. 

These two regions are contiguous to each otiier, so they are real neighbors. Figure 23 shows the 
common edge between the regions shown in Figure 19. These two regions are neighbors in the 
model image, but separate in the examined image because of shadows. By using our common 
edge finding method, the common edges are detected and classified as pseudo-neighbors. 



LI = abbdguiddfv odjfbdaa 

Lz = ...asdidnalbdaaabbdddf.. 
(a) 

Li.= abbdquiddfv....Qdifbdaa abbdguiddfv..■■odj.. 

 /_ 
Lz = ...asdichalbdaaabbdf... 

(b) 
Figure 21: If the starting point of the local graph inside the match pattern, it will break the pattern, (a) shows such 
example, (b) shows how to fix this problem by cloning I/. 
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Selected Regions Found common edge 
Figure 22: Use local graph to find the common edge between regions 

Model image 
Figure 23: The common edge is detected in model image and examined image 
respectively for example shown in Figure 19. 

6.2..Region Synthesis 
After a common edge is detected, the region synthesis process starts. The process merges all 
neighbor regions and extracts the whole object shape. 
If there are two regions Rj and R2, the rules to synthesize them it to a new shape R/2 are 

■ If RL(R,, i?^)=contiguous, shape(/?;2) = shape(i?;) Y shape(/?2) 
■ lfRL(Rj, i?2)=contain, shape(_R,2) = shape(/?;) 



■ lfRL{Ri, i?2)=contained, shape(/?/2) = shape(/?2) 
■ URLIR,, /f2)=separate, shape{R,2) = €> 

In order to improve the performance of the region synthesis process, we build the Table 3 to 
accelerate the finding of common edges process. In fact, we do not need to compute the 
relationship for every node pair. Sometimes, the relationship can be deduced fi'om other 
relationships. In the merge process, the regions Ri and R2 are merged as a new region R12. Then, 
the relationship between R,2 and R3 can be deduced somewhat from the relationships RL{RuR}) 
and RL{R2,R3), where RL(x,y) is the relationship between region x and region y. Table 3 
summarizes all possible relations between R^ and R3, given RLiRi.Ri) and RL(R2,R3). 
Figure 24 graphically shows the consecutive steps of the synthesis process. 

Figure 24: Illustration of the Region synthesis 

Table 3. . Deduce obJect12/obJect3 relationship after merging objecti and obJect2 

R1->R2 R2^R3 R12^R3 
Contiguous Contain Contained Separate 

Contiguous 

Continuous • 

Contain • 

Contained • 

Separate • • 

Contain 

Contiguous • 

Contain • 

Contained • 

Separate • 

Contained Contiguous • 

Contain • 

Contained • • 



Separate • • • 

Separate 

Contiguous 
Contain 

' ■'i^i -■ ■>>' 

Contained 
1 ■    . 

Separate 

6.3 The Entire L-G Graph Matching Scheme 

To formulate the matching measurement, an L-G match error ERRL-G is proposed as well. It is 
defined as 

ERRL.G = (l-ERRrel)-(ERRG + ERRsHape) (28) 

where the ERRj^ is the total matching error between object and model, ERRni is the matching 
error of relationships among regions, ERRc is the matching error between global graphs, and 
ERRshape is the matching error between two objects' shapes. 
Then, the entire L-G graph matching scheme is summarized as three cases, 
1. Object and model have only ONE region. 
Compare object's shape with model's shape. 
One region corresponds to one node and there is no global graph for either model or object. Thus, 
ERRrei is 1 and ERRG is 0 because they are related to graph matching. In this case, the error 
ERRL.G is simplified to only one term, i.e., 

ERRL.G = ERRshape 
If the shape matching error ERRshape is less than a predetermined threshold Thshape, 
i.e. ERRshape < Thshape, then we consider that the object is similar to the model. Here the returned 
ERRshape is the measure of similarity. 
2. Object and model have only TWO regions. 
Suppose the two object regions are Robi and /?„«, and the two model regions are Rmji and R„d2. 
The graph for two-region objects is a straight line. The global graph matching error ERRc is 
eliminated. Now the Error function becomes 

ERR1.G ~ (1-ERRrel) ' ERRshape 

For two regions, there is only one relationship between them. Suppose the relationships are Reob = 
RL(Robi, Robz) and Re„d = RL(R„ji, R^js)- If the relationship Rcob and Re„,d do not match, i.e., Rcob 
^ Rcmd, the matching process fails; otherwise, continue. 
Merge Robi, Rob2- Roti ^ Robi ^ Rotn- 

Merge R„dl, RmdlRmdl ^Rmdl "^ Rmdl2- 

If the shape matching error is less than the preset threshold Thshape, i-e. ERRshape < Thshape, then the 
object is similar to the model.Thus, the returned ERRshape is the measure of similarity. 
3. Object and model have more than two regions. 
Suppose object regions are 
Sob •• {Robi, Rob2, ■■■ , Robm} , m is the regions count 
Model regions are 
Smd ■• fRmdl, Rmd2, ■■■, Rmdm} . "7 IS the rCgioUS COUUt. 
Now the Error ERR^G has all three terms, 

ERRL.G = (1-ERRred • (ERRG + ERRshape) 

Let a relationship set be 
Reob-=Y.RL({Sob(i). SobOV. ij=l-m) 
Re„d = IRL({SUi) S„dO)h ij=l...m) 



Then, the relationship set Reob and Re„d are compared based on the Table 3. If all region (node) 
relationships comply with the condition in Table 3, then the relationship error ERRrei returns 0; 
otherwise it returns 1 and the process ends. 
Then, build the global graph from the object and model region set Sot and Smd, 

GHob = DE(Sob) 
and GH„j = DE(S„d) 

where DE(-) is the Global Graph operator. The global graph error ERRc is obtained by 
comparing GHob and GH^d- The global graph definition requires that not all nodes lie on a straight 
line. If it happens, we cannot create a global graph from that node set. This is a pre-condition of 
ERRQ. We check this condition prior to computing the graph error. If not all nodes are one 
straight line, the ERRc is computed based on equations (22) and (23). We notice that the object 
region could be affected by many factors, such as view angle, data acquiring method and 
equipment, light condition, etc. A Human's perception system generally has a large tolerance to 
the region deformation, but is keen to shape deformation. Thus, a relatively large threshold Thgraph 
is set for ERRc- If the ERRc is bigger than Thgraph, it means that the current object has a very 
different structure from the model. We will not consider them as similar and quit the current step. 
Otherwise, the error term ERRc is saved.Then, we proceed to the next matching step. 
In the third step, current object regions are merged based on their internal relationships. 

Merge object set, SHPob = Y {Sob} 

Merge model set, SHP„d = Y {S„d} 

The region synthesis method is described in the section above. In fact, the model is saved in the 
database prior to the matching process. It's shape can be synthesized by adding it into the 
database. Thus, we need only to do it once and compare it with any object shapes. This will 
improve the matching performance. 
After synthesizing, we compute the shape similarity between SHPot and SHP„d- Basically, the 
single region comparing method (described in a previous section) is applied to them. If the shape 
matching error is less tiban the predetermined threshold Thshape, i-C-, ERRshape < Thshape, then the 
object is similar to the model. The retumed ERRshape is saved. 
If all three terms are computed and fall into the acceptable range, the object is located and 
recognized. 
The total similarity measurement is computed by (28). The smaller the ERRL-G is, the more 
similar the object and model are. If, however, the matching process fails, the generated graphs 
may be saved in a separated part of the database for possible future use. This part of the matching 
process may represent the "learning" part of the recognition by providing information about 
deformed objects where the corresponding graphs do not match with the models in the regular 
graph-database [33]. 

7. Conclusions 
This paper has presented an object recognition method mainly based on Wavelets, L-G graphs 
and the synthesis of the regions that compose an object by using their graph representations. The 
methodology belongs to the model based recognition, where models of objects exist in a graph 
based database. The results are accurate as long as the extracted candidate object L-G graph has a 
satisfactory matching with an object-model in the LG graph database. An important point of the 
object recognition process is the synthesis of the object regions by using the LG graph and 
neighborhood criteria, such as adjacent lines. This feature helps for the extraction and generation 
of the most accurate object model that has to be matched against the existing database. Another 
important feature this methodology is its leaming capabilities. In particular, the learning scheme 
here is based on the extraction and generation of object L-G graph models that have no matching 
with the ones in the database.  For instance, if finally an object LG graph model is produced by 



this method (by iteratively selecting different neighbor regions in various combinations) with no 
satisfactory matching acceptance, this particular LG graph model is saved into the database and 
classified as a new object (Oj). This new object (Oj) stays in the database as along as no better 
version is extracted from the same scene for it. This may happen if a camera is capturing images 
from a certain parking lot with different weather conditions. This means that the pixels of the 
same image extracted from the same scene are now functions and no just single values. In other 
words, illumination may create artifacts and a "new LG graph object-model (Oj)" to be saved in 
the database. Later, when the illumination effect change, a new version of the same object may be 
recognized and an appropriate correction or replacement, of the object (Oj) will take place. On 
the other hand, if no new version of the object (Oj) is found, then this object is new and a name is 
given to it. In other words, the system learns new objects and associated them in an object- 
category with similar features in the database. Details for the learning process are available in 
[33]. 

References 

[01] D.P. Huttenlocher, G. ELlanderman and W.J. Rucklidge, "Comparing Images Using The 
Hausdorff Distance", IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 25, 
no. 9, pp. 850-863,1993. 

[02] A. Sanfeliu and King-Sun Fu, "A Distance Measure Between Attributed Relational Graphs 
For Pattern Recognition", IEEE Trans, on Systems, Man. and Cybernetics, vol. 13, no. 3, 
pp. 353-362, 1983. 

[03] Y. Amit and A. Kong, "Graphical Templates For Model Registration", IEEE Trans, on 
Pattern Analysis and Machine Intelligence, vol. 18, no. 3, pp. 225-236, 1996. 

[04]   Ronald Alferez and Yuan-Fang Wang, "Geometric And Illuminating Invariants For Object 
Recognition", IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 21, no. 6, 
pp. 505-536, 1999. 

[05] A. D.J. Cross and E. R. Hancock, "Graph Matching With A Dual-Step EM Algorithm", 
IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1236-1253, 
1998. 

[06] N.. Bourbakis, "Generating 2-D Space Maps From Unknown Environments", International 
Journal Of Pattern Analysis and Artificial Intelligence, vol. 13, no. 3, pp. 297-318, 1999. 

[07] S. E. Sclaroff, "Model Matching: A Method For Describing, Comparing And Manipulating 
Digital Signals", PhD Thesis, MIT, 1995. 

[08] E.. El-Kwae and M. R. Kabuka, "A Robust Framework For Content-Based Retrieval By 
Spatial Similarity In Image Database", ACM Transaction On Information Systems, vol. 17, 
no. 2, pp. 174-198,1999. 

[09] A. Celentano and E. Di Sciascio, "Feature Integration And Relevance Feedback Analysis In 
Image Similarity Evaluation", Journal of Electronic Imaging, vol. 7, no. 2, pp. 308-317, 
1999. 

[10] A. Pentland and S. Sclaroff, "Closed-Form Solutions For Physically Based Shape Modeling 
And Recognition", IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 13, no. 
7, pp. 715-729, 1991. 

[11] Q. M. Tieng and W. W. Boles, "Recognition Of 2-D Object Contours Using The Wavelet 
Transform Zero-Crossing Representation", IEEE Trans, on Pattern Analysis and Machine 
Intelligence, vol. 19, no. 8, pp. 910-916, 1997. 

[12] M. Werman and D. Weinshall, "Similarity And Affine Invariant Distances Between 2-D 
Point Sets", IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 
810-814, 1995. 



[13] E. Kubicka, G. Kubicki and I. Vakalis, "Using Graph Distance In Object Recognition", 
1990 ACM Eighteenth Annual Computer Science Conference Proceedings, ACM, New 
York, NY, pp. 43-48, 1990. 

[14] L. Jia and L. Kitchen, "Object-Based Image Similarity Computation Using Inductive 
Learning Of Contour-Segment Relations", IEEE Trans. On Image Processing, vol. 9, no. 1, 
pp. 80-88, 2000. 

[15] J. T.L., Wang, B. A., Shapiro, D. Shasha, K. Zhang and K. M. Currey, "An Algorithm For 
Finding The Largest Approximately Common Substructures Of Two Trees", IEEE Trans. 
on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 889-895, 1998. 

[16] X. Yi and O. I. Camps, "Line-Based Recognition Using A Multidimensional Hausdorff 
Distance", IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 21, no. 9, pp. 
901-919, 1999. 

[17] S. Abbaui, F. Mokhtarian and J. Kittler, "Curvature Scale Space Image In Shape Similarity 
Retrieval", Multimedia-Systems, vol. 7, no. 6, pp. 467-476, 1999. 

[18] H. D. Tagare, F. M. Vos, C. C. Jaffe, J. S. Duncan "A Spatial Relation Between Parts For 
Similarity Of Tomographic Section", IEEE Trans, on Pattern Analysis and Machine 
Intelligence, vol. 17, no. 9, pp. 880-893, 1995. 

[19] W Wan and J A. Ventura, "Segmentation Of Planar Curves Into Straight-Line Segments 
And Elliptical Arcs", Graphical Models and Image Processing, vol. 59, no. 6, pp. 484-494, 
1997. 

[20] G. A. W. West and P. L. Rosin, "Techniques For Segmenting Image Curves Into 
Meaningful Descriptions", Pattern Recognition, vol. 24, no. 7, pp. 643-652, 1991. 

[21] N. Ahuja, B. An and B. Schachter, "Image Representation Using Voronoi Tessellation", 
Computer Vision, Graphics and Image Processing, vol. 29, pp. 286-295, 1985. 

[22] N. Ahuja, "Dot Pattern Processing Using Voronoi Neighborhoods", IEEE Trans, on 
Pattern Analysis and Machine Intelligence, vol. 4, no. 3, pp. 336-342, 1982. 

[23] K. Arbter, W. E. Snyder, H. Burkhardt and G. Hirzinger, "Application of Affme-Invariant 
Fourier Descriptors to Recognition of 3-D Object", IEEE Trans, on Pattern Analysis and 
Machine Intelligence, vol. 12, no. 7, pp. 640-646, 1990. 

[24]   N. Bourbakis, Emulating human visual perception for measuring differences in images using 
an SPN graph approach, IEEE Trans, on Systems, Man and Cybernetics, 32,2,191-201,2002 

[25] Hu MK, "Visual Pattern Recognition by Moments Invariants", IRE Transaction of 
Information Theory, IT. 8, pp. 179-187, 1962. 

[26]   T. Pavlidis, "Structural Pattern Recognition", Berlin, New York: Springer-Verlag, 1977. 

[27] S. Ranade and A. Rosenfeld, "Point Pattern Matching By Relation", Computer Society 
Tech. Rep., TR-702, 1978. 

[28] M. Celenk, "Relational Graph Representation Of Color Images For Model-Based Matching 
Using Relational Distance Measurement", Visual Information Processing IV Proc. SPIE, 
pp. 229-240, 1995. 

[29] S. Sclaroff and A. P. Pentland, "Generalized Implicit Functions For Computer Graphics", 
ACM Computer Graphics, vol. 25, no. 4, pp. 247-251, 1991. 

[30] X. Yuan, "Recognition of 3D objects", PhD Thesis SUNY, 2002 KDE 
[31] N. Bourbakis, "A Rule-Based Scheme For Synthesis of Texture Images", Int. IEEE Conf. 

on systems, Man and Cybernetics, Fairfax, VA, pp. 999-1003, 1987. 
[32] N. Bourbakis, "Extraction, Tracking and Recognition Of Targets In Sequences Of Images", 

Int. Journal AIT, vol. 11, no. 4, 2002. 
[33] N. Bourbakis, "Recognition of deformed objects using 3D L-G graphs", AIIS report, 2003. 

[34]   H-T Sheu and W-C. Hu, "Multi-primitive Segmentation Of Planar Curves-A Two-Level 
Breakpoint Classification And Tuning Approach", IEEE Trans, on Pattern Recognition and 
Machine Intelligence, vol. 21, no. 8, pp. 791-797, 1999. 



[35] D. Fotakis and N. Bourbakis, "A Heuristic Scheme For The Recognition Of Progressive 
Digital Straight Lines With Unevenness", Int. IEEE Workshop on LFA, MD, pp. 176-184, 
1988. 

[36] N. Bourbakis and D.Goldman, Recognition and acquisition of digital line segments with 
unevenness w^ith applications to recognition of handwritten characters and fingerprints, IF AC 
IJEAAI.12.273-279.1999 

[37] D.Heam and M. Baker, "Computer Graphics, C version". Upper Saddle River, NJ: Prentice 
Hall\991. 

[38] Q. Qing and Z. Yang, "Practical Wavelet Analysis", Xian Electronics Tech., Xian, China, 
1995. 

[39] Zahn CT, "Using The Minimum Spanning Tree To Recognize Dotted And Dashed Curves", 
International Computing Symposium, North-Holland, Amsterdam, Netherlands, pp. 381- 
387, 1974. 

[40] H. Bunke, "Error Correcting Graph Matching: On The Influence Of The Underlying Cost 
Function", IEEE Trans, on Pattern Recognition and Machine Intelligence, vol. 21, no. 9, 
pp. 917-922, 1999. 

[41]  L.  Davis,  "Shape matching  suing relaxation  techniques", IEEE  Trans,   on Pattern 
Recognition and Machine Intelligence, vol. l,pp. 60-72, 1979. 

Acknowledgement 
The Alls personnel and the WSU research group express their great appreciation to Mr. S Borek 
and Dr. Herklotz for their generous support and professional guidance for achieving our goals 
proposed in the AFRL-STTR Phase I proposal. Also we like to thank any other AFRL personnel 
Involved in the process. 


